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Abstract

In linear regression analysis, it is common to use instruments to address measure-

ment error in the regressor. However, bias can still arise if the measurement error

correlates with either the true variable, other regressors, or the instrument. This pa-

per develops a sensitivity analysis framework for linear instrumental variables (IV)

models that accounts for such concerns. We establish bounds for the parameter of

interest using a set of sensitivity parameters that restrict the consistent deviations of

the measurement from the true variable. We illustrate our methods in an empirical

study that uses twins data to analyze the effect of schooling level on wages.
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1 Introduction

Concerns about measurement error in linear models are prevalent in economics. When the

regressor is contaminated by measurement error, the usual result is that the ordinary least

squares (OLS) estimator for the parameter of interest is subject to attenuation bias. A

straightforward approach to address this issue is to use instrumental variables (IV) (e.g.,

Farber et al., 2021; Hoffman and Tadelis, 2021; Rogall, 2021).

However, the use of IV estimators for addressing measurement error has limitations.

First, non-classical measurement error, which indicates a correlation between measurement

error and the true value, can lead to bias in IV estimators (Black et al., 2000). Such

concerns are common in self-reported data due to systematic misreporting (e.g., Bollinger,

1998; Blattman et al., 2017; Abay et al., 2019; Bick et al., 2022). Second, Measurement error

in self-reported data can correlate with demographic variables (e.g., Bound and Krueger,

1991; Bound et al., 1994; Angel et al., 2019), which may result in biased IV estimators if

these variables are included as controls in the regression. Finally, when the instrument is a

second measurement, bias can arise due to correlated measurement errors (e.g., Ashenfelter

and Krueger, 1994; Giglio et al., 2021). Therefore, it is natural to question how to assess

the bias in IV estimators given these concerns.

Without additional information (e.g., validation data), little is known about the nature

of measurement error. A possible approach to address these concerns is to explore the

robustness of empirical results to alternative measures (e.g., Allcott et al., 2016; Bastos

et al., 2018; Dobbie et al., 2018; Macchiavello and Morjaria, 2021). If the coefficient remains

stable under alternative measures, then the bias in IV estimators due to measurement error

may be limited. However, it is important to note that there is no formal econometric theory

supporting such conclusions1.

The main contribution of this paper is to propose a framework for assessing sensitivity

to general measurement error in linear IV models. This framework allows the measurement

1The robustness check approach may lead to incorrect conclusions. See Section 4.2 for discussion.
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error to be flexibly correlated with the true variable, other covariates, and the instrument.

We derive bounds for the parameter of interest using a set of sensitivity parameters that

impose that the measurement does not consistently deviate ”too much” from the true value.

Applied to self-reported data, our key sensitivity parameters can be interpreted in terms of

the rates of underreporting and overreporting.

More concretely, the parameter of interest is β, the coefficient on an unobserved variable

X∗ in the regression of outcome Y on X∗ and other covariates W . Since X∗ is unobserved,

we use a noisy measurement X and an instrument Z. The IV estimand βIV is the coefficient

on X from regressing Y on X and W , instrumenting X with Z. In this linear IV model,

measurement error u can be decomposed as

u =
(
X − E[X | X∗,W, Z]

)
︸ ︷︷ ︸

random error

+
(
E[X | X∗,W, Z]−X∗

)
︸ ︷︷ ︸

systematic error

(1)

where we borrow notions random error and systematic error from experimental physics2. We

begin by considering a baseline assumption of ”no systematic error”, which implies that IV

estimand βIV equals β. Hence, any bias in IV estimand βIV (i.e., βIV ̸= β) can be attributed

to the systematic error.

To relax the baseline assumption, we propose a relative measure of systematic error

called slope function. Our identification results use the lower and upper bounds of this

function as sensitivity parameters (λl and λu), which restrict the extent of systematic error

in the measurement. Our first and main result provides closed-form bounds for β consistent

with restrictions imposed by (λl, λu). This result requires no systematic error at X∗ = 0,

but it does not impose conditional mean independence or parametric assumptions on the

measurement error. As discussed in Section 3.2, these bounds involve only one sensitivity

parameter after reparameterization in several special cases (e.g., λl and λu are symmetric

2Chapter 4 in Taylor (1997) stated that ”Experimental uncertainties that can be revealed by repeating
the measurements are called random errors; those that cannot be revealed in this way are called systematic
errors.”
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across 1).

Our main result can be used in two ways. First, we show that validation data can help

identify sensitivity parameters (λl, λu) under mild assumptions and then characterize bounds

for β consistent with data. Second, researchers can assess the sensitivity of their empirical

conclusions to the extent of systematic error by varying sensitivity parameters. When there

is only one sensitivity parameter, we provide simple expressions for the breakdown point,

defined as the largest deviation we can allow while maintaining a specific baseline finding

according to our bounds.

We provide two extensions of the main result. Firstly, if the true variable has a point mass

at zero, we generalize our bounds by incorporating a sensitivity parameter to restrict sys-

tematic error at X∗ = 0. Secondly, in scenarios with multiple measurements, we characterize

the bounds as intersection bounds and demonstrate that the model is falsifiable.

We apply our framework to the twins data from Ashenfelter and Krueger (1994), who

studied the effect of schooling level on wages. We show that their high estimates of the

return to education are robust to the presence of systematic error. This indicates that their

unusual results might stem from sampling error, as Rouse (1999) concluded.

After discussing the related literature, we introduce the model and the decomposition of

general measurement error in Section 2. Section 3 presents the main identification results

and discusses their practical application and interpretation. In Section 4, we propose two

extensions. Section 5 considers an empirical application. Section 6 concludes. All proofs

and additional supporting results can be found in the appendix.

Related Literature

This paper relates to the literature on the impact of (non-classical) measurement error on

OLS and IV estimators; see, for example, Ashenfelter and Krueger (1994), Black et al. (2000),

Hyslop and Imbens (2001), and Abay et al. (2019). These studies focus on the direction of

bias but do not develop a formal sensitivity analysis. In contrast, our approach introduces
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a different set of assumptions: instead of restricting the correlations between measurement

error and (X∗,W, Z), we bound the extent of systematic error, which is easy to interpret

and permits flexible dependence on (X∗,W, Z). For example, Black et al. (2000) assumes

that the measurement error is negatively correlated with X∗ and does not correlate with

covariates W ; these conditions are not necessary in our approach.

Several other works have conducted sensitivity analysis of measurement error in linear

models. For the binary mismeasured regressor, restrictions are typically imposed through

misclassification probabilities (e.g., Bollinger, 1996; Kreider and Pepper, 2007; Jiang and

Ding, 2020). While these methods are straightforward, it remains unclear how to extend

them to the continuous regressor. Some approaches that allow for measurement error in

continuous variables include Klepper and Leamer (1984), Erickson (1993), Bollinger (2003),

Chalak and Kim (2020) and DiTraglia and Garćıa-Jimeno (2021). Unlike these papers, which

assume measurement error is uncorrelated with the true variable, our framework allows for

more flexible correlations.

Our paper also fits into recent literature on sensitivity analysis of various endogeneity in

linear models, including omitted variable bias (e.g., Oster, 2019; Cinelli and Hazlett, 2020;

Diegert et al., 2023; Masten and Poirier, 2024) and invalid IV (e.g., Small, 2007; Ashley,

2009; Masten and Poirier, 2021; Cinelli and Hazlett, 2025). Compared with these papers,

our method is specific to the context of measurement error.

Finally, our work is complementary to the literature on the nonparametric identification

of models with non-classical measurement error (e.g., Hu and Schennach, 2008; Hu et al.,

2022). While these papers concentrate on the point identification of nonparametric structural

functions, our aim is to characterize the bounds for a specific regression coefficient of interest.

Furthermore, our framework does not depend on conditional independence assumptions, nor

does it require the normalization of the latent variable.
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Notation Remark

For random variable A and random (k×1) vector B , define A⊥B = A−B′ ·(E[BB′])−1E[BA],

which is the residual from a linear projection A on B. Note by definition A⊥B is a random

variable and E[A⊥BB] = 0. When B includes a constant, we have E[A⊥B] = 0.

2 Measurement Error in Linear IV Models

We study a classical linear IV model with a mismeasured regressor. In this section, we set

up notations and define a decomposition for general measurement error. We then state a

baseline assumption, which point identifies the parameter of interest.

2.1 Basic Setup

Let Y , X∗, X, and Z be scalar variables. Let W0 be a vector of observed covariates of

dimension d and W = (1,W0). The following assumption ensures the parameter we consider

is well-defined.

Assumption 1. The variance matrix of (Y,X∗,W, Z,X) is finite and positive definite.

We can write

Y = βX∗ + γ′W + ϵ (2)

where ϵ = Y ⊥(X∗,W ) and is uncorrelated with (X∗,W ) by construction. We do not require

E[ϵ | X∗,W ] = 0, which allows for possible misspecification in the linear model. Suppose

the parameter of interest is the coefficient β.

The regressor X∗ is not observed; instead, we observe a measurement X. Define mea-

surement error

u = X −X∗ (3)

The concept of classical measurement error is widely used in the literature. We follow the

weakly classical definition in Schennach (2022), which states the measurement error u is
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mean-zero and mean independent of the true variable X∗. If this is not the case, we refer to

the measurement error as non-classical, indicating a correlation between u and X∗.

The OLS estimator of β is biased towards zero in traditional errors-in-variables models

where u is uncorrelated with (X∗,W, ϵ) (see Chapter 9.4 in Wooldridge, 2013). To address

the bias, we use an instrument variable Z, which is possibly the second measurement.

Assumption 2. (i) Cov(Z, ϵ) = 0. (ii) Cov(Z⊥W , X⊥W ) ̸= 0.

Assumption 2 states the exclusion and relevance of instrument variable Z. To keep the

discussion simple, we assume Cov(Z⊥W , X⊥W ) > 0 throughout the rest of the paper.

2.2 Bias in IV Estimand

Let βIV denote the coefficient on X in the IV estimand of Y on (X,W ) with the instrument

variable Z:

βIV =
Cov(Z⊥W , Y ⊥W )

Cov(Z⊥W , X⊥W )
(4)

In the following analysis, we explain how measurement error is likely to yield bias in βIV

(βIV ̸= β). Consider the OLS estimand of Z on W , we can write

Z = π′W + Z⊥W

where each component of W is uncorrelated with Z⊥W by construction. By equation (4), we

have3

βIV − β = −β · Cov(Z⊥W , u)

Cov(Z⊥W , X)
= −β · Cov(Z − π′W,u)

Cov(Z⊥W , X)
(5)

which means the bias arises from the correlation between the measurement error u and Z or

W . Although not always the case, non-classical measurement error could be a reason behind

this since u is likely to correlate with Z due to the correlation between X∗ and Z.

We discuss three examples in the empirical studies below:

3See equation (26) in Appendix A for detailed derivation.
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Example 1. Bick et al. (2022) showed evidence that workers who work for long hours (more

than 45 hours per week) tend to overreport their hours. Let X∗ = true working hours, X =

reporting working hours. It is possible to have

Cov(X∗, u) > 0 ⇒ Cov(Z, u) > 0 ⇒ Cov(Z⊥W , u) ̸= 0

We can raise similar concerns for self-reported income or expenditure data.

Example 2. Angel et al. (2019) found that males tend to overreport wages, pensions, and

unemployment benefits more than females, driven by a desire to showcase social status. If

we include the dummy variable W (1 for male and 0 for female) in the regression, we have:

Cov(W,u) ̸= 0 ⇒ Cov(Z⊥W , u) ̸= 0

Example 3. Gillen et al. (2019) suggested using multiple elicitations to address the mea-

surement error in experimental studies. They choose another measurement for X∗ as the

instrument variable; that is

Z = X∗ + ξ

When employing this method, Giglio et al. (2021) raised the concern that errors may be

positively correlated across the two elicitations, which means Cov(ξ, u) > 0. In this case, if

both u and ξ are independent of X∗, we have

Cov(Z, u) = Cov(ξ, u) ̸= 0 ⇒ Cov(Z⊥W , u) ̸= 0

The three examples provided illustrate different ways in which the error u could be

correlated with Z⊥W , potentially leading to bias in βIV. Additionally, multiple channels may

exist, which complicates the analysis of measurement error in linear IV models.
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2.3 Random Error and Systematic Error

To further analyze the bias in IV estimand, we decompose the measurement error into two

components4:

u =
(
X − E[X | X∗,W, Z]

)
︸ ︷︷ ︸

random error ũ

+
(
E[X | X∗,W, Z]−X∗

)
︸ ︷︷ ︸

systematic error

= ũ+ E[u | X∗,W, Z]

(6)

This decomposition is unique and does not rely on any assumption of the measurement

error. By construction, the random error ũ is mean independent of (X∗,W, Z) and typically

unavoidable. Hence, taking multiple measurements can reduce the effect of random error.

On the other hand, systematic error, which reflects the deviations from the true variable X∗

in the conditional mean of the measurement given (X∗,W, Z), can cause the measurement

to be consistently higher or lower than the true value. This type of error is usually difficult

to assess and identify.

For instance, self-reported data can be affected by both random and systematic errors5. If

individuals can not accurately recall events, errors may be random since people may some-

times overestimate and sometimes underestimate. Conversely, if individuals intentionally

misreport the true outcome (Abay et al., 2019), the error is systematic.

We introduce a natural baseline assumption below, which implies that the measurement

error u is mean independent of the true variableX∗, covariatesW , and instrument Z. Denote

Ω as the support of random vector (X∗,W, Z).

4Hyslop and Imbens (2001) studied the effect of Berkson error (E[u | X] = 0) on coefficients. Their
decomposition of measurement error is similar to us:

u =
(
X − E[X | X∗]

)
+
(
−X∗ + E[X∗ | X]

)
+

(
E[X | X∗]− E[X∗ | X]

)
If X is mean independent of (W,Z) given X∗, our random error becomes their first term, and systematic
error is the sum of their remaining two terms.

5See Kirkpatrick (2024) for a detailed introduction of random and systematic errors in self-reported
dietary intake data.
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Assumption 3 (No systematic error). E[u | X∗ = x∗,W = w,Z = z] = 0 for all (x∗, w, z) ∈

Ω.

It is evident that Assumption 3 does not hold in examples 1, 2, and 3, as their u is corre-

lated with one of (X∗,W, Z) respectively. We have the following equivalent characterization.

Proposition 1. Assumption 3 holds if and only if for all (x∗, w, z) ∈ Ω

(i) E[X | X∗ = x∗] = x∗.

(ii) E[X | X∗ = x∗,W = w,Z = z] = E[X | X∗ = x∗].

Our baseline assumption is stronger than the weakly classical in Schennach (2022), which

is shown in condition (i). Additionally, we include that the measurement X is mean inde-

pendent of (W,Z) conditional on X∗ in condition (ii). With no systematic error, we have

the following result.

Proposition 2. Suppose the joint distribution of (Y,X,W,Z) is known. Suppose Assump-

tions 1, 2 and 3 hold. Then βIV = β. Consequently, β is point identified.

The point identification result of β with a valid instrument Z is widely used in the

literature. We highlight its sufficient condition6 in Proposition 2. Therefore, the bias in βIV

can be attributed to systematic error.

3 Sensitivity Analysis to the Systematic Error

In this section, we assess the impact of the systematic error on IV estimands. Specifically,

we allow both conditions (i) and (ii) in Proposition 1 to be violated.

6A sufficient and necessary condition is that Cov(Z⊥W , u) = 0, which is weaker than our baseline as-
sumption but not as easily understood. Nevertheless, we suggest that researchers carefully examine the
systematic error when using IV estimators.
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Table 1: Slope Functions under Different Assumptions of Measurement Error

Assumptions on Characterizations

Measurement Error of Slope Function

Baseline Assumption λ(x∗, w, z) = 1

Mean independence λ(x∗, w, z) = λ̃(x∗)

Overreporting λ(x∗, w, z) > 1

Underreporting λ(x∗, w, z) < 1

Notes: Mean independence refers to condition (ii) in Propo-
sition 1. If X is mean independent of Z conditional on
(X∗,W ), we have λ(x∗, w, z) = λ̃(x∗, w). Overreporting
refers toX > X∗, while underreporting means thatX < X∗.

3.1 A Relative Measure of the Systematic Error

Recall that the systematic error is E[X | X∗,W, Z]−X∗. We begin with a relative measure

of systematic error. Let Ω0 = {(x∗, w, z) ∈ Ω : x∗ ̸= 0}. Define slope function on Ω0

λ(x∗, w, z) =
E(X | X∗ = x∗,W = w,Z = z)

x∗

which can be interpreted as a ”measure of location” (Hu and Schennach, 2008). In particular,

our baseline assumption of ”no systematic error” implies that λ(x∗, w, z) = 1. Table 1

provides equivalent characterizations of the slope function under different assumptions of

measurement error.

We will reinterpret Examples 1-3 using the slope function below.

Example 1 (Continued). Recall that workers tend to overreport their hours when they work

more than 45 hours per week. For x∗ > 45, we have λ(x∗, w, z) > 1.

Example 2 (Continued). Recall that males (W = 1) tend to overreport income more than

females (W = 0). Then, we have λ(x∗, w = 1, z) > λ(x∗, w = 0, z).

Example 3 (Continued). We can regard X and Z as two measurements for X∗. Suppose

their measurement errors u and ξ are independent of (X∗,W, Z) and follow the joint normal
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distribution:  u

ξ

 ∼ N


 0

0

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


 , where σ1, σ2, ρ > 0

Then, we have

E[X | X∗ = x∗,W = w,Z = z] = x∗ + E[u | ξ = z − x∗] = x∗ + ρ · σ1
σ2

· (z − x∗)

which implies λ(x∗, w, z) > 1 when z > x∗ and λ(x∗, w, z) < 1 when z < x∗.

We relax the baseline assumption below.

Assumption 4. (i) Pr(X∗ = 0) = 0 or E[X | X∗ = 0,W, Z] = 0. (ii) (bounds of the

slope function) There exists known parameters λu ≥ λl > 0 such that

λl ≤ λ(x∗, w, z) ≤ λu, ∀(x∗, w, z) ∈ Ω0

Assumption 4 (i) implies there is no point mass or no systematic error at X∗ = 0, which

ensures a key equation holds almost surely7:

X = λ(X∗,W, Z) ·X∗ + ũ (7)

where ũ is the random error defined in (6). This equation connects the measurement with

the true variable through the slope function. Assumption 4 (ii) states that the lower and

upper bounds of the slope function (λl and λu) are known to researchers. This assumption

includes the baseline assumption as a special case where λl = λu = 1. Moreover, it allows

for deviations from the baseline assumption by allowing λl, λu to differ from 1.

Assumption 4 has two important features: First, it does not impose mean independence

7For x∗ = 0, λ(x∗, w, z) can take any number between λl and λu.
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restrictions on the slope function, as described in Table 1. This means that we allow for

flexible correlations between measurement error and (X∗,W, Z). Second, the slope function

does not require a particular functional form. Researchers only need to reason about the

bounds of the slope function.

One notable case occurs when the slope function degenerates to a constant λ ̸= 1. In

this situation, we can express the relationship as follows8:

X = λX∗ + ũ (8)

where ũ is the random error. We discuss its properties in Appendix B.

Interpreting Bounds of the Slope Function

Our sensitivity parameters (λl, λu) specify the largest deviations from the baseline assump-

tion. We make several remarks on how to interpret them in practice.

First, we can interpret and calibrate (λl, λu) based on the deviation rate of the conditional

mean of the measurement from the true value. Take self-reported data, for example; the

slope function represents the average rates of underreporting or overreporting within specific

subgroups, which rules out the effect of random error on the measurement. If subjects tend

to overreport the true value, we can set λl = 1 and utilize our prior knowledge to calibrate

λu. In general, if the average of self-reports deviates by no more than ψu% above or ψl%

below the true value, we set λu = 1 + ψu% and λl = 1− ψl%.

Second, we need to evaluate how the variables (W,Z) affect the slope function when X∗

is fixed. If the error u is mean independent of (W,Z) given X∗, there is no additional effect

after controlling for X∗. Otherwise, we need to assess the degree of underreporting and

overreporting in certain subgroups characterized by (W,Z). Likewise, if the error u is mean

independent of Z given (X∗,W ), we only need to consider the extra effects of W .

8Haider and Solon (2006) and An et al. (2022) modeled the relationship between observed income (de-
noted as X) and permanent income (denoted as X∗) using parametric expression (8), with slightly different
restrictions on ũ.
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Finally, the analysis mentioned above does not require the true variable to be continuous

or discrete. While the baseline assumption is less likely to hold for discrete variables (Black

et al., 2000), we can still apply the slope function to ordinal outcomes, such as years of

schooling in our empirical application.

3.2 Identification Using bounds of the Slope Function

Recall from Section 2 that our parameter of interest is β, the OLS coefficient on X∗ in the

regression of Y on (X∗,W ). Since X∗ is not observed, we cannnot compute this regression

from the data. Instead, we rely on the IV estimand βIV, defined in equation (4). Our main

result, Theorem 1 below, characterizes the bounds of β using bounds of the slope function

in Assumption 4.

Theorem 1. Define

α =
E(|X · Z⊥W |)− Cov(Z⊥W , X)

2Cov(Z⊥W , X)
≥ 0

Suppose the joint distribution of (Y,X,W,Z) is known. Suppose Assumptions 1, 2, 4 and

λu/λl < 1 + α−1 are satisfied. Normalize βIV > 0. Then, β > 0 and

B(λl, λu) ≤ β ≤ B(λl, λu)

where

B(λl, λu) = βIV

/(
1 + α

λl
− α

λu

)
, B(λl, λu) = βIV

/(
1 + α

λu
− α

λl

)
.

We first sketch the proof and then discuss its implications. First, we consider the ratio

between βIV and β:

βIV

β
=

Cov(Z⊥W , X∗)

Cov(Z⊥W , X)
.

The second step is to notice that bounding Cov(Z⊥W , X∗) is similar to that for interval data
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in Bontemps et al. (2012). To see the intuition, consider the extreme case ũ = 0 (no random

error), restrictions in Assumption 4 (ii) become X/X∗ ∈ [λl, λu]. This allows us to derive its

bounds based on (λl, λu). Finally, we obtain

1

λu
− (

1

λl
− 1

λu
) · α ≤ βIV

β
≤ 1

λl
+ (

1

λl
− 1

λu
) · α (9)

The length of the bounds for βIV/β is given by (1 + 2α) ·
(

1
λl
− 1

λu

)
. It is important to

note that α is identified from observed data. A larger value of α results in wider bounds for

β, which makes it more sensitive to systematic errors. Additionally, a stronger correlation

between X⊥W and Z⊥W typically leads to a smaller value of α.

Since Theorem 1 provides simple and closed-form expressions for the lower and upper

bounds of β, we can immediately derive some properties. First, when λl = λu = 1, the

bounds collapse to βIV, the point estimand from the baseline model with no systematic

error. Second, as sensitivity parameters change, the bounds may not be a singleton, but

they change continuously with λl and λu. Both lower and upper bounds can be derived from

the second moments of (Y,X,W,Z) and the sensitivity parameters. Finally, these bounds

are positive only if λu/λl < 1 + α−1. This condition ensures that βIV and β take the same

sign9.

We discuss three special cases of Theorem 1 below, each involving only one sensitivity

parameter.

Example 4. (λl and λu are symmetric across 1) Let λl = 1 − ψ and λu = 1 + ψ for

some ψ ∈ [0, 1
2α+1

), where ψ denotes the largest deviation rate of the conditional mean of

the measurement from the true variable. The bounds become

[B(1− ψ, 1 + ψ), B(1− ψ, 1 + ψ)]

=

[
1− ψ2

1 + (1 + 2α)ψ
· βIV,

1− ψ2

1− (1 + 2α)ψ
· βIV

] (10)

9If λu/λl > 1 + α−1, we have B(λl, λu) < 0 and β ∈ (−∞, B(λl, λu)] ∪ [B(λl, λu),+∞) by bound (9).
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Example 5. (Case of overreporting) Let λl = 1 and λu = 1 + ψ for some ψ ∈ [0, α−1),

where ψ denotes the largest average rate of overreporting. The bounds become

[B(1, 1 + ψ), B(1, 1 + ψ)]

=

[
1 + ψ

1 + (1 + α)ψ
· βIV,

1 + ψ

1− αψ
· βIV

] (11)

Note that the lower bound is smaller than βIV, so overreporting does not necessarily under-

estimate β under general measurement error.

Example 6. (Case of underreporting) Let λl = 1−ψ and λu = 1 for some ψ ∈ [0, 1
α+1

),

where ψ denotes the largest average rate of underreporting. The bounds become

[B(1− ψ, 1), B(1− ψ, 1)]

=

[
1− ψ

1 + αψ
· βIV,

1− ψ

1− (1 + α)ψ
· βIV

] (12)

Numerical Illustration

We conclude this subsection with a brief numerical illustration. The outcome equation is

Y = 1 + 2X∗ + ϵy (β = 2), and the instrument is generated by Z = (X∗)2 − log(X∗) + ϵz,

where X∗ ∼ Unif[1, 3], ϵy ∼ N (0, 0.62) and ϵz ∼ N (0, 1). Consider two measurements with

linear slope functions:

X1 = (0.95 + 0.05X∗)︸ ︷︷ ︸
λ1(x∗)

·X∗ + ũ1, X2 = (1.15− 0.05X∗)︸ ︷︷ ︸
λ2(x∗)

·X∗ + ũ2

where random error ũi ∼ N (0, 0.32) (i = 1, 2). We plot these two slope functions on the

left of Figure 1, which satisfy Assumption 4 with (λl, λu) = (1, 1.1). The average degree

of overreporting is increasing in x∗ for measurement X1, while it is decreasing in x∗ for

measurement X2.
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Figure 1: Numerical illustration. Left: solid line and dashed line are slope functions for
measurement X1 and X2 respectively, and dotted lines are bounds of these two slope func-
tions. Right: solid lines and dashed lines are bounds of β using measurement X1 and X2,
respectively, and the dotted line represents the true value β = 2.

The right of Figure 1 presents bounds of β using (11) for two measurements with different

deviations ψ. At ψ = 0, these bounds are singletons, corresponding to IV estimators:

1.77 for measurement X1 and 2.20 for measurement X2. We see that both bounds change

continuously and become wider as ψ increases. Moreover, when ψ = 0.1 (the largest deviation

in two slope functions), our bounds include the true value β = 2.

3.3 Discussion

Sharpness of Lower and Upper Bounds

Let B(λl, λu) denote the identified set for β under conditions in Theorem 1. Given the joint

distribution of (Y,X,W,Z), it includes all β such that there exists a joint distribution of

(Y,X,W,Z,X∗) consistent with Assumptions 1,2 and 4 , where

β =
Cov(Y ⊥W , X∗)

Var(X∗⊥W )
.

17



For simplicity, we focus on the smallest and largest elements in this set. Unfortunately,

it is possible that B(λl, λu) and B(λl, λu) might not represent these elements. In the Ap-

pendix C, we prove the sharpness of these bounds under additional restrictions. Nevertheless,

bounds in Theorem 1 contain the sharp identified set of β as long as our assumptions hold.

Identification of λl and λu with Validation Data

Validation data provides an additional sample containing the measurement and the true

value of the variable. It has been a useful approach to address the measurement error (e.g.,

Chen et al., 2005; Blattman et al., 2017). In our model, it helps to identify λl and λu and

characterize bounds for β. We make mild assumptions about the validation data below.

Assumption 5. The validation data {X0i, X
∗
0i}

n0
i=1 satisfies:

(i) Let g0(x
∗) = E(X0i | X∗

0i = x∗) and λ0(x
∗) = g0(x

∗)/x∗. There exists a compact set

S ⊆ R known to researchers such that 0 /∈ S and

λl = inf
x∗∈S

λ0(x
∗), λu = sup

x∗∈S
λ0(x

∗)

(ii) There exists an estimator ĝ0(·) such that supx∗∈S |ĝ0(x∗)− g0(x
∗)| p−→ 0 as n0 → ∞.

Assumption 5 (i) states that λl and λu are identified as the minimum and maximum

values of the slope function from the validation data on a known set S. Condition (ii)

assumes the uniform consistency for the estimator ĝ(·), which holds for local constant or

local linear estimators under certain conditions (Li and Racine, 2007).

We estimate λl and λu by

λ̂l = inf
x∗∈S

ĝ0(x
∗)

x∗
, λ̂u = sup

x∗∈S

ĝ0(x
∗)

x∗

The next proposition shows that these estimators are consistent.
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Proposition 3. Suppose Assumption 5 hold, then λ̂l
p−→ λl and λ̂u

p−→ λu as n0 → ∞.

Given the small validation sample size, we may adopt the method in Chernozhukov et al.

(2013) to address the finite sample bias. We leave a detailed analysis for these bias-corrected

estimators and inference to future work.

Breakdown Analysis

Without validation data, researchers may utilize prior knowledge to calibrate λl and λu

based on the interpretation of the slope function, as discussed in Section 3.1. To check the

robustness formally, we can perform the breakdown analysis described in Masten and Poirier

(2020). Suppose the baseline model we find that βIV ≥ β0 for some β0 > 0. Define robust

region:

RR(β0) = {λu ≥ λl > 0 : β ≥ β0 ∀β ∈ B(λl, λu)} (13)

which contain all sensitivity parameters that allow us to draw our desired conclusion: β ≥ β0.

Corollary 1. Let Λ = {(λl, λu) ∈ R2
+ : 1 ≤ λu/λl < 1 + α−1}. Suppose the assumptions of

Theorem 1 hold. For any β0 ∈ (0, βIV], define inner robust region:

RRI(β0) = {(λl, λu) ∈ Λ : B(λl, λu) ≥ β0}

= {(λl, λu) ∈ Λ :
1 + α

λl
− α

λu
≤ βIV

β0
}

(14)

Then RRI(β0) ⊆ RR(β0).

The inner robust region is the set of all (λl, λu) that provides a lower bound in Theorem

1 that is greater than or equal to β0. It may be more conservative than the robust region

but has an explicit expression. In particular, the inner robust region shrinks as α becomes

larger. We only consider the case where the conclusion (β ≥ β0) holds under the baseline

assumption, ensuring RRI(β0) ̸= ∅.
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Example 4 (Continued). Recall that λl and λu are symmetric across 1 in this example, so

there is only a one-dimensional sensitivity parameter ψ. Redefine robust region and inner

robust region in terms of ψ:

RR(β0) = {ψ ≥ 0 : β ≥ β0 ∀β ∈ B(1− ψ, 1 + ψ)}

RRI(β0) = {ψ ∈
[
0,

1

1 + 2α

)
: B(1− ψ, 1 + ψ) ≥ β0}

(15)

We have RRI(β0) ⊆ RR(β0) by Corollary 1. Moreover, the inner robust region becomes a

line at the point

ψbp(β0) = sup

{
ψ ∈

[
0,

1

1 + 2α

)
:
1 + (1 + 2α)ψ

1− ψ2
≤ βIV

β0

}
(16)

which is a breakdown point for the conclusion that β ≥ β0
10. It is the largest deviation rate

of the conditional mean of the measurement from the true variable we can allow for while

still concluding β ≥ β0 based on Theorem 1. The analytical expression for the breakdown

point is

ψbp(β0) = min

{
1

1 + 2α
,
−(1 + 2α)β0 +

√
(1 + 2α)2β2

0 + 4(βIV − β0)βIV

2βIV

}

Example 5 (Continued). In the case of overreporting, redefine robust region and inner

robust region in terms of ψ:

RR(β0) = {ψ ≥ 0 : β ≥ β0 ∀β ∈ B(1, 1 + ψ)}

RRI(β0) = {ψ ∈ [0, α−1) : B(1, 1 + ψ) ≥ β0}

10Masten and Poirier (2020) defined the breakdown point using the robust region. Our breakdown point
is defined using the inner robust region so that it is more conservative.
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The breakdown point is

ψbp(β0) = sup

{
ψ ∈ [0, α−1) :

1 + (1 + α)ψ

1 + ψ
≤ βIV

β0

}

=


α−1 if (1 + α)β0 ≤ βIV

min
{
α−1, βIV−β0

(1+α)β0−βIV

}
otherwise

which describes the largest average rate of overreporting that we can allow while still con-

cluding β ≥ β0 based on Theorem 1.

4 Extensions

In this section, we provide bounds for two extensions on the model in Section 3. We also

discuss an extension with omitted variables (i.e., the exclusion condition in Assumption 2

(i) does not hold) in Appendix D.

4.1 Systematic Error at X∗ = 0

We relax condition (i) in Assumption 4 in this subsection by introducing another sensitivity

parameter to bound the systematic error at X∗ = 0.

Assumption 6. There exists A0 ≥ 0 such that ∀(0, w, z) ∈ Ω,

∣∣∣E[X | X∗ = 0,W = w,Z = z]
∣∣∣ ≤ A0.

Theorem 2. Suppose Assumptions 1, 2, 4 (ii) and 6 hold. Then,

1 + α

λu
− α

λl
−D(A0, λu) ≤

βIV

β
≤ 1 + α

λl
− α

λu
+D(A0, λu) (17)

21



where

D(A0, λu) =
A0 · E[|Z⊥W | · 1{X∗ = 0}]

λuCov(Z⊥W , X)
.

Compared with bounds (9) in Section 3, Theorem 2 includes an additional termD(A0, λu).

In practice, since D(A0, λu) is not identified from data, we need to use prior knowledge to

construct its upper bound. For example, there may exist a set S0 ∈ R such that X∗ = 0

only if X ∈ S0, then we have

D(A0, λu) ≤ D(A0, λu) ≡
A0 · E[|Z⊥W | · 1{X ∈ S0}]

λuCov(Z⊥W , X)
.

where D(A0, λu) can be identified from data.

Example 4 (Continued). Suppose we are interested in the robustness of the conclusion that

β ≥ β0 for some known scalar A0. By Theorem 2 (let λl = 1− ψ and λu = 1 + ψ),

1− (1 + 2α)ψ

1− ψ2
−D(A0, 1 + ψ) ≤ βIV

β
≤ 1 + (1 + 2α)ψ

1− ψ2
+D(A0, 1 + ψ) (18)

where D(A0, 1 + ψ) ≥ D(A0, 1 + ψ) can be identified from data. Let

Ψ(A0) =

{
ψ ∈ [0, 1) :

1− (1 + 2α)ψ

1− ψ2
−D(A0, 1 + ψ) > 0

}

It is easy to see that β and βIV takes the same sign if ψ ∈ Ψ(A0). Similarly, define the

breakdown point

ψbp(β0, A0) = sup

{
ψ ∈ Ψ(A0) :

1 + (1 + 2α)ψ

1− ψ2
+D(A0, 1 + ψ) ≤ βIV

β0

}
(19)

which is the largest deviation rate of the conditional mean of the measurement from the true

variable we can allow for while still concluding β ≥ β0 based on bounds (18) and A0.
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4.2 Multiple Measurements

When multiple measurements are available, a possible approach is to compare these IV esti-

mators to explore the robustness of empirical results (e.g., Allcott et al., 2016; Bastos et al.,

2018). For example, Dobbie et al. (2018) stated: ”We explore the robustness of our results

to alternative measures of pretrial release. . . and find very similar results.” The intuition

behind this approach is that the concerns over IV estimators due to measurement error may

be limited if a coefficient remains stable after using other measurements. However, it is im-

portant to note that there is no formal econometric theory supporting such conclusions. In

particular, if multiple measurements are subject to similar forms of measurement error, the

resulting IV estimators may be consistently biased in the same direction—leading to stable,

but still biased, coefficients.

As a corollary of Theorem 1, we can characterize the bounds of β as intersection bounds

with multiple measurements. In the numerical example presented in Section 3.2, when

the value of ψ is set to 0.1, the bounds for β are [1.60, 2.20] using measurement X1 and

[1.94, 2.85] using measurement X2. While these bounds are relatively wide, we can tighten

them to [1.94, 2.20] if both measurements X1 and X2 are available.

Corollary 2. Let X1, X2, · · ·Xm be measurements (m ≥ 2). Suppose assumptions in The-

orem 1 hold for (Y,Xi,W, Z) with sensitivity parameters (λl,i, λu,i) (1 ≤ i ≤ m). Then, we

have

max
1≤i≤m

Bi(λl,i, λu,i) ≤ β ≤ min
1≤i≤m

Bi(λl,i, λu,i).

where bounds [Bi(λl,i, λu,i), Bi(λl,i, λu,i)] are obtained by applying Theorem 1 on (Y,Xi,W, Z).

Moreover, the model is falsified if

min
1≤i≤m

B(λl,i, λu,i) < max
1≤i≤m

B(λl,i, λu,i).

Corollary 2 implies that the model is falsifiable with multiple measurements. To salvage
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the falsified model, we can allow for larger deviations or consider the falsification adaptive

set described in Masten and Poirier (2021). A detailed analysis will be deferred to future

work.

5 Empirical Application: the Returns to Education

We apply our method to the twins data from Ashenfelter and Krueger (1994), which estimates

the economic returns to schooling. They compared the wage rates of identical twins and used

the first difference to address the omitted ability bias. The idea is that identical twins, having

the same genetics and family background, are expected to have similar abilities.

Data was collected at the Annual Twins Day Festival in Twinsburg, Ohio, in August

199111. Ashenfelter and Krueger (1994) utilized a questionnaire based on the instrument of

the Current Population Survey (CPS). They asked each twin about their wage rates, years

of schooling, and common demographic variables. After dropping missing values, data in

our analysis consists of 147 twins.

5.1 Baseline Model Results

Denote random variables Y1 and Y2 by the logarithms of the wage rates of the first and

second twins in the pair12. Let S∗
m and Wm (m = 1, 2) represent the true schooling level and

other covariates of the mth twin.

Denote random variable µ by an unobservable component that varies by family. Ashen-

felter and Krueger (1994) specified wage rates as

Y1 = βS∗
1 + γ′W1 + µ+ ϵ1

Y2 = βS∗
2 + γ′W2 + µ+ ϵ2

(20)

11Data source: https://dataspace.princeton.edu/handle/88435/dsp012801pg35n, which contains a
public use file with 183 twins and selected variables from the 1991 twins data Ashenfelter and Krueger (1994)
used.

12Ashenfelter and Krueger (1994) randomly selected one twin as the first in each pair.
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where ϵm (m = 1, 2) are unobservable individual components. Our outcome equation is the

difference between two equations in (20)

Y1 − Y2︸ ︷︷ ︸
∆Y

= β · (S∗
1 − S∗

2)︸ ︷︷ ︸
X∗

+γ′ (W1 −W2)︸ ︷︷ ︸
W

+(ϵ1 − ϵ2) (21)

In our study, the true variable X∗ is the difference of true schooling levels in a pair, and the

parameter of interest β measures the effect of schooling level on wages.

Let Sn
m (m,n = 1, 2) refer to the education level of the mth twin as reported by nth twin.

We have two measurements for X∗:

X = S1
1 − S2

2 , Z = S2
1 − S1

2 (22)

which represent the difference in self-reports and sibling-reports, respectively. Define mea-

surement errors

u = X −X∗, ξ = Z −X∗ (23)

In columns (i) and (iii) of Table 2, we replicate AK’s OLS and IV estimates of the out-

come equation (use X as the independent variable and Z as the instrument). In column (ii),

We also run OLS using Z as the independent variable. In column (iv), we use Z as the inde-

pendent variable and X as the instrument. These point estimates are statistically significant

at conventional levels. Moreover, IV estimators are much larger than OLS estimators.

5.2 Extension and Discussion for Baseline Estimates

Measurement error in self-reported schooling levels can be serious, and differencing data

may increase the severity of measurement error (Griliches, 1979). Ashenfelter and Krueger

(1994) adjusted for correlated measurement errors between X and Z and indicated that an

additional year of schooling increases wages by 12-16 percent, a higher estimate than that in

prior and later work. These results are based on assumptions that measurement errors (u, ξ)
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Table 2: Estimates of the Outcome Equation (First Difference)

OLS Own OLS Sibling’s IV Own IV Sibling’s

Panel A Report (i) Report (ii) Report (iii) Report (iv)

Years of schooling 0.091 0.098 0.179 0.158

(0.022) (0.021) (0.041) (0.038)

Sample size 147 147 147 147

Panel B. Sensitivity Analysis

α̂× 100% 27.8% 28.4%

ψ̂bp × 100% (β0 = 0.1) 35.8% 28.7%

Notes: Panel A is the same as table 2 in Black et al. (2000), which uses Ashenfelter
and Krueger (1994) data. The dependent variable is the logarithmic differences
in the wages of identical twins. Each equation also contains differences in tenure,
martial status and union coverage as controls. Numbers in parentheses are estimated
standard errors. Panel B is new and calculates the estimates for α and breakdown
point.

follow a joint normal distribution and are uncorrelated with the true variable X∗. Using a

larger sample of twins, Rouse (1999) estimated that the return to schooling among identical

twins is about 10 percent and concluded that the unusual results in Ashenfelter and Krueger

(1994) were likely due to sampling error.

Bounds in Black et al.(2000)

Black et al. (2000) provided bounds for the coefficient in the presence of non-classical mea-

surement error with an application of Ashenfelter and Krueger (1994) data. Based on certain

assumptions, they demonstrated that the coefficient falls between the OLS estimand and the

IV estimand. Specifically, their analysis revealed that the estimate in AK data ranged from

13% to 16%.

Their lower bound comes from the OLS regression in a subsample of twins who agree

about the magnitude of the difference in education (X = Z). Its validity builds on the

assumption that X is independent of Z conditional on X∗. However, it may not hold if their
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Figure 2: Sensitivity analysis under Theorem 1 in the empirical application (Left side: IV
own report; Right side: IV sibling’s report)

reporting behavior is highly correlated. Additionally, Black et al. (2000) require that u is

uncorrelated with other covariates in multivariate regression, but this is not necessary in our

framework.

5.3 Sensitivity Analysis Based on the Slope Function

The baseline results in Table 2 (iii) and (iv) rely on the assumption of ”no systematic error”.

In particular, column (iii) requires that the measurement error in X is mean independent of

(X∗,W, Z). Next, we use our framework to assess the sensitivity of high estimates (β ≥ 0.1)

in Ashenfelter and Krueger (1994) to systematic error. Since X∗ can be zero, we first use

Theorem 1 by assuming no systematic error at X∗ = 0 for two measurements and then relax

it.

We consider two specifications: IV own report and IV sibling’s report, as shown in

columns (iii) and (iv) in Table 2. In columns (iii) and (iv) of Panel B, the sample-analog

estimators for α are 27.8% and 28.4%, respectively. This suggests that the two specifications

are similarly sensitive to the presence of systematic errors.
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Breakdown Analysis For simplicity, we assume sensitivity parameters λl and λu are

symmetric across 1, as specified in Example 4. Figure 2 presents the results for two specifi-

cations, with the single parameter ψ indicating the deviation from the baseline assumption.

Two solid lines show the estimated bounds for β as a function of ψ, as described by bounds

(10). The dashed horizontal line represents the estimate in Rouse (1999): β0 = 0.1, whose

interactions with the solid line refer to the breakdown point ψbp: the minimum deviation

needed to overturn the result β ≥ β0. As reported in Panel B of Table 2, the estimated

breakdown points ψ̂bp are 35.8% for IV own report and 28.7% for IV sibling’s report. For

example, for the specification of IV own report, we can conclude β ≥ 0.1 as long as the

measurement X deviates consistently at most 35.8% from the true variable.

Calibrated ψ We provide a data-drive method to calibrate ψ in Appendix E. The main

idea is to split the sample into two and compare their IV estimators. Table 3 presents the

estimates of the calibration parameter ψ using various methods for splitting the sample.

Consider column (iii), calibrated ψ is smaller than the breakdown point estimate of 35.8%

for all but the upper quantile of random spilt and the split using years of tenure, suggesting

that the conclusion (β ≥ 0.1) is quite robust to systematic error. In column (iv), calibrated

ψ is much smaller and confirms the robustness.

Allow for Systematic Error at X∗ = 0 To apply Theorem 2, we calibrate A0 as

Ā = max
{∣∣∣En[X | Z = 0]

∣∣∣, ∣∣∣En[Z | X = 0]
∣∣∣} (24)

where En refers to sample-based empirical expectation. To establish the bound onD(Ā, 1+ψ)

in Theorem 2, we assume that if either of the two measurements exceeds M (which is either

3 or 4), then X∗ is unlikely to be zero. Then, we have

E
[
|Z⊥W | · 1{X∗ = 0}

]
≤ E

[
|Z⊥W | · 1{X ≤M} · 1{Z ≤M}

]
(25)
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Table 3: Calibrating ψ: Compare IV Estimators in Subgroups

IV Own IV Sibling’s

Report (iii) Report (iv)

Random split

25th 14.9% 9.8%

Median 29.0% 19.7%

75th 47.0% 32.1%

Split by Variables

Age 25.4% 6.9%

Diff in Years of Tenure 47.0% 2.0%

White 27.3% 15.2%

Male 6.3% 8.2%

Notes: Random split is chosen byK = 2 with 500 times. We
also split sample by variables. For continuous variables (age
and diff in years of tenure), we split two subsamples based
on their means. For binary variables (white and male), we
split samples based on their values.

As shown in Panel A of Table 2, estimated breakdown points become smaller when A0

increases but are still larger than most calibrated values.

Overall, our sensitivity analysis examines the robustness of the effect of education on

wages under more general measurement errors compared to previous research. We find that

the unusually high estimates in Ashenfelter and Krueger (1994) are robust to the presence

of systematic error. The reason may be sampling error, as Rouse (1999) suggested.

Table 4: Sensitivity Analysis Based on ψ and A0

A0 IV Own Report (iii) IV Sibling’s Report (iv)

M = 3 M = 4 M = 3 M = 4

0 35.8% 35.8% 28.7% 28.7%

Ā 34.7% 34.3% 27.3% 26.9%

1.3Ā 34.3% 33.8% 26.9% 26.3%

Notes: This table reports estimates of the breakdown point
(β0 = 0.1) based on equation (19).
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6 Conclusion

In this paper, we develop a framework to assess sensitivity to systematic error in linear IV

models. Relative to existing literature, we allow for measurement error that is correlated with

the true variable, other covariates, and the instrument in a flexible manner. We propose a

relative measure of systematic error, called the slope function, which is intuitive to interpret.

Using the bounds of the slope function, we derive simple bounds for the parameter of interest.

One possibility of extension is to tighten our bounds by adding more assumptions on the

slope function, such as monotonicity and functional form restrictions (e.g., conditional mean

independence). Additionally, we hope that our approach can be applied to explore the

sensitivity to the systematic error in other related models.
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The Online Supplement to ”Assessing Measurement Error in Linear

Instrumental Variables Models”

Appendix A contains the proofs of the results presented in the main body. Appendix

B examines a simple case of non-classical measurement error. Appendix C outlines the

conditions related to the sharpness of our bounds. Appendix D presents an extension that

addresses omitted variables. Appendix E offers a data-driven method to calibrate λu/λl.

Finally, Appendix F provides proofs for the results discussed in the appendices.

A Proofs of Main Results

A.1 Proofs for Section 2

Proof of Proposition 1. Assumption 3 is equivalent to ∀(x∗, w, z) ∈ Ω

E[X | X∗ = x∗,W = w,Z = z] = x∗.

We can easily see its equivalence with two conditions in Proposition 1. Q.E.D.

Proof of Proposition 2. Since both Y − Y ⊥W and X − X⊥W are linear combinations of

W , we have

Cov(Z⊥W , Y − Y ⊥W ) = 0, Cov(Z⊥W , X −X⊥W ) = 0.

Then,

βIV =
Cov(Z⊥W , Y ⊥W )

Cov(Z⊥W , X⊥W )

=
Cov(Z⊥W , Y )

Cov(Z⊥W , X)

=
Cov(Z⊥W , βX∗ + γ′W + ϵ)

Cov(Z⊥W , X)

By the construction of ϵ, we have Cov(W, ϵ) = 0. We further obtain Cov(Z⊥W , ϵ) = 0 by
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Assumption 2 (i). Combined it with Cov(Z⊥W ,W ) = 0, we have

βIV = β · Cov(Z
⊥W , X∗)

Cov(Z⊥W , X)
(26)

Since Assumption 3 implies Cov(Z⊥W , u) = 0, we have

βIV = β − β · Cov(Z⊥W , u)

Cov(Z⊥W , X)
= β

Finally, since βIV is identified from the joint distribution of (Y,X,W,Z), β is point

identified. Q.E.D.

A.2 Proofs for Section 3

Proof of Theorem 1. From equation (26), we have β ̸= 0 and

βIV

β
=

Cov(Z⊥W , X∗)

Cov(Z⊥W , X)
(27)

Then we only need to focus on the bounds of Cov(Z⊥W , X∗). Since W includes a constant,

we have E[Z⊥W ] = 0 and Cov(Z⊥W , X∗) = E[Z⊥WX∗].

By Assumption 4 (ii), the following equation holds almost surely:

X = λ(X∗,W, Z) ·X∗ + ũ (28)

where ũ is the random error. Then

Cov(Z⊥W , X∗) = E
[
Z⊥W · X − ũ

λ(X∗,W, Z)

]
= E

[
Z⊥W · X

λ(X∗,W, Z)

]
(29)

where we use E[ũ | X∗,W, Z] = 0.

Let

p+ = Pr(Z⊥WX ≥ 0), p− = Pr(Z⊥WX < 0).
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By equation (29), we have

Cov(Z⊥W , X∗) ≥E
[
Z⊥W · X

λl + 1{Z⊥WX ≥ 0}(λu − λl)

]
=

1

λu
· E

[
Z⊥WX | Z⊥WX ≥ 0

]
· p+ +

1

λl
· E

[
Z⊥WX | Z⊥WX < 0

]
· p−

=
1

λu
· E[Z⊥WX]− 1

2
· ( 1
λl

− 1

λu
) · (E(|Z⊥WX|)− E[Z⊥WX])

(30)

where we use

E
[
Z⊥WX | Z⊥WX ≥ 0

]
· p+ =

1

2

(
E(|Z⊥WX|) + E[Z⊥WX]

)
E
[
Z⊥WX | Z⊥WX < 0

]
· p− = −1

2

(
E(|Z⊥WX|)− E[Z⊥WX]

)
Similarly, we have

Cov(Z⊥W , X∗) ≤ 1

λl
· E[Z⊥WX] +

1

2
· ( 1
λl

− 1

λu
) · (E(|Z⊥WX|)− E[Z⊥WX]) (31)

By equation (27) and bounds (30), (31), we obtain

1

λu
− (

1

λl
− 1

λu
) · α ≤ βIV

β
≤ 1

λl
+ (

1

λl
− 1

λu
) · α (32)

Then β > 0 since βIV > 0 and λu/λl < 1 + α−1. Our bounds of β follow from the bounds

above. Q.E.D.

Proof of Proposition 3. Let s = minx∗∈S |x∗|, then we have s > 0 since S is compact and

0 /∈ S.
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By Assumption 5 (ii), we have

λ̂l = inf
x∗∈S

ĝ0(x
∗)

x∗

≥ inf
x∗∈S

g0(x
∗)

x∗
− supx∗∈S |ĝ0(x∗)− g0(x

∗)|
s

= λl − op(1)

(33)

On the other hand, since S is compact, there exists x∗l ∈ S such that λ0(x
∗
l ) = λl, then

λ̂l ≤
ĝ0(x

∗
l )

x∗l

≤ λ0(x
∗
l ) +

supx∗∈S |ĝ0(x∗)− g0(x
∗)|

s

= λl + op(1)

(34)

Thus we conclude λ̂l
p−→ λl as n0 → ∞.The consistency of λ̂u can be similarly proved and

therefore omitted. Q.E.D.

Proof of Corollary 1. Note that Theorem 1 implies B(λl, λu) ∈ [B(λl, λu), B(λl, λu)] if

(λl, λu) ∈ Λ. Then we have RRI(β0) ⊆ RR(β0) by the definition of the robust region in (13).

Q.E.D.

A.3 Proofs for Section 4

Proof of Theorem 2. Define function:

g(w, z) = E[X | X∗ = 0,W = w,Z = z]

Then we have |g(W,Z)| ≤ A0 by Assumption 6.

For (0, w, z) ∈ Ω, let λ(0, w, z) = λu. Write down

X = g(W,Z) · 1{X∗ = 0}+ λ(X∗,W, Z) ·X∗ + ũ (35)
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where ũ is the random error. Then,

E[Z⊥WX∗] = E
[
Z⊥W · X − g(W,Z) · 1{X∗ = 0} − ũ

λ(X∗,W, Z)

]
= E

[
Z⊥W · X

λ(X∗,W, Z)

]
− E

[
Z⊥W · g(W,Z) · 1{X

∗ = 0}
λ(X∗,W, Z)

] (36)

where we use E[ũ | X∗,W, Z] = 0. The absolute value of the second part is bounded by

E
[
|Z⊥W | · A01{X∗ = 0}

λ(0,W, Z)

]
= E

[
|Z⊥W | · A01{X∗ = 0}

λu

]
(37)

In the proof of Theorem 1, we have shown

1 + α

λu
− α

λl
≤

E
[
Z⊥W · X

λ(X∗,W,Z)

]
Cov(Z⊥W , X)

≤ 1 + α

λl
− α

λu
(38)

Finally, by (27) and (36)

βIV

β
=

E
[
Z⊥W · X

λ(X∗,W,Z)

]
Cov(Z⊥W , X)

−
E
[
Z⊥W · g(W,Z)·1{X∗=0}

λ(X∗,W,Z)

]
Cov(Z⊥W , X)

∈
[
1 + α

λu
− α

λl
−D(A0, λu),

1 + α

λl
− α

λu
+D(A0, λu)

] (39)

Q.E.D.

Proof of Corollary 2. It follows directly from Theorem 1. Q.E.D.

B A Simple Case of Non-classical Measurement Error

In this section, we consider a simple case of non-classical measurement error under the

following assumption.

Assumption B.1. E[X | X∗ = x∗,W, Z] = λx∗ for some positive λ ̸= 1.

Assumption B.1 states that the conditional mean E[X | X∗ = x∗] is proportional to x∗,

40



but the slope is not 1. It violates condition (i) but still satisfies condition (ii) in Proposition

1. In self-reported data, we can understand it as subjects tending to overreport (λ > 1) or

underreport (λ < 1) the true value, while the average degree remains the same across all

levels of the true value.

Under Assumption B.1, a more familiar expression is

X = λX∗ + ũ (40)

where ũ is the random error. Then, we have the decomposition of the measurement error

u = X −X∗ = ũ+ (λ− 1)X∗︸ ︷︷ ︸
systematic error

(41)

which implies that λ > 1 (λ < 1) leads to the positive (negative) correlation between X∗

and u. Let βOLS be the coefficient on X in the OLS estimand of Y on (X,W ). The following

Proposition gives the expressions of OLS and IV estimands.

Proposition B.1. Suppose Assumptions 1, 2 and B.1 hold, we have βIV = β
λ
. Moreover, if

Cov(ϵ, ũ) = 0, then

βOLS =
β

λ
·
[

Var(X∗⊥W )

Var(X∗⊥W ) + λ−2Var(ũ)

]
︸ ︷︷ ︸

≤1

.

There are two kinds of bias in βOLS: attenuation bias from the random error ũ and bias

from systematic error (λ ̸= 1). While βIV can avoid the attenuation bias, it is unable to ad-

dress the bias from systematic error. An implication of the IV estimand is that overreporting

(λ > 1) underestimates β, while underreporting (λ < 1) overestimates β.

Proposition B.1 implies that the bias in the OLS estimand tends to be more complicated

than that in the IV estimand. Overreporting (λ > 1) leads to a downward bias in OLS

estimand, but the direction of bias under underreporting (λ < 1) is ambiguous, depending

on the ratio of λ and attenuation bias.
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We can conduct a sensitivity analysis if Assumption B.1 holds for some λ within the

interval [λl, λu], where λu ≥ λl > 0 are known parameters. Proposition B.1 provides bounds

on β as follows:

1

λu
≤ βIV

β
≤ 1

λl

These bounds are narrower than those in bounds (9), which account for general measurement

error.

C Sharpness of Lower and Upper Bounds

We first state Assumption C.1, which ensures the sharpness of bounds in Theorem 1. Given

λ1, λ2 > 0, define random variable

X(λ1, λ2) =
X

λ1
· 1{(Z − π′W )X ≥ 0}+ X

λ2
· 1{(Z − π′W )X < 0} (42)

Define the sign function of a real number x as:

sgn(x) :=


1 if x > 0

0 if x = 0

−1 if x < 0

Assumption C.1. The following hold.

(i) The variance matrix of (Y,X,W,Z) is finite and positive definite.

(ii) Cov(Z⊥W , X) > 0 and Cov(Z⊥W , Y ) > 0.

(iii) λu/λl < 1 + α−1.
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(iv) The following inequalities hold for X̃ = X(λl, λu) and X(λu, λl)

Cov(Y ⊥W , X̃)

Var(X̃⊥W )
≤ Cov(Z⊥W , Y )

Cov(Z⊥W , X̃)
≤ Cov(Y ⊥W ,E[X̃|Z,W, sgn(X)])

Var(E[X̃⊥W |Z,W, sgn(X)])

where these denominators are bounded away from zero.

Theorem C.1. Suppose the joint distribution of (Y,X,W,Z) satisfies Assumption C.1.

Then, bounds in Theorem 1 are sharp; that is

B(λl, λu) = inf B(λl, λu), B(λl, λu) = supB(λl, λu).

The key assumption is the condition (iv) in Assumption C.1. We illustrate it under

λl = λu = 1:

Cov(Y ⊥W , X)

Var(X⊥W )
≤ Cov(Z⊥W , Y )

Cov(Z⊥W , X)︸ ︷︷ ︸
βOLS≤βIV

≤ Cov(Y ⊥W ,E[X|V ])

Var(E[X⊥W |V ])

for V = (Z,W, sgn(X)). The first inequality states βOLS ≤ βIV = β, which is known as

attenuation bias. The second inequality suggests that Var(E[X | V ]) can not be too large,

indicating there is ”enough noise” in X after being explained by (Z,W ). These inequalities

are testable and provide sufficient conditions for the sharpness.

D An Extension with Omitted Variables

In empirical studies, both measurement error and omitted variables can be sources of endo-

geneity. Therefore, researchers may intend to use IV to address them together. A natural

question arises regarding adjusting our bounds in the presence of omitted variables.

Consider the linear regression with omitted variables D:

Y = βX∗ + γ′W + ρ′D + Y ⊥(X∗,W,D)︸ ︷︷ ︸
error term ϵ
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where the coefficient β is our parameter of interest. Endogeneity arises if X∗ or W is

correlated with any of the omitted variables. Let

ϵ = χ1Z + χ′
2W + ϵ⊥(Z,W )

We allow ϵ to be correlated with Z, but put the restriction below.

Assumption D.1. |χ1| ≤ κ for known parameter κ ≥ 0.

Proposition D.1. Suppose Assumption 1, 2 (ii), 4 and D.1 hold. Suppose λu/λl < 1+α−1

and Var(Z⊥W ) · κ ≤ |Cov(Z⊥W , Y )| hold. Normalize βIV > 0. Then, β > 0 and

B(λl, λu)

(
1− Var(Z⊥W )

Cov(Z⊥W , Y )
· κ

)
≤ β ≤ B(λl, λu)

(
1 +

Var(Z⊥W )

Cov(Z⊥W , Y )
· κ

)

Proposition D.1 shows that the adjustment term is proportional to κ. If the exclusion

condition holds (κ = 0), the adjustment term becomes zero.

E Calibrating the magnitude of λu/λl

We provide a data-dependent approach to calibrate the magnitude of the ratio r = λu/λl.

To see the intuition, suppose the slope function only takes two values: λ1 and λ2 (λ1 < λ2),

and data is divided into two groups. In group k (k = 1, 2), the measurement error satisfies

Assumption B.1 with λ = λk. Let βIV
k denote the IV estimand in group k, by Proposition

B.1, we have

βIV
1 =

β

λ1
, βIV

2 =
β

λ2
=⇒ r =

λ2
λ1

=
βIV
1

βIV
2

which implies that r is identified if we can identify these two groups. This example suggests

comparing IV estimators in different subgroups to calibrate r, which motivates the following

method:

Step 1. Randomly divide data into K groups, where K ≥ 2 is a predetermined integer.
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Step 2. Obtain IV estimators within groups: β̂IV
1 , β̂IV

2 , · · · , β̂IV
K .

Step 3. Compute

r̂ = max
1≤k≤K

|β̂IV
k |/ min

1≤k≤K
|β̂IV

k |

Step 4. Repeat Step 1-3 for N times, yielding r̂1, r̂2, · · · , r̂N .

Step 5. Calibrate r as the median of {r̂j}Nj=1.

This approach can help us calibrate λl and λu in special cases. Taking example 4 (λl =

1− ψ, λu = 1 + ψ), after calibrating r, we can solve for ψ from

1 + ψ

1− ψ
= r

We can calibrate the parameter ψ in examples 5 and 6 similarly.

F Proofs for Appendix

F.1 Proofs for Appendix B

Proof of Proposition B.1. Recall that random error ũ = X−λX∗, we have Cov(Z⊥W , ũ) =

0. By equation (26),

βIV = β · Cov(Z⊥W , X∗)

Cov(Z⊥W , λX∗ + ũ)
=
β

λ

For OLS estimand, we have Cov(X, ϵ) = Cov(λX∗ + ũ, ϵ) = 0. Since X⊥W is a linear

combination of X and W , we obtain Cov(X⊥W , ϵ) = 0. Then,

βOLS =
Cov(X⊥W , Y )

Cov(X⊥W , X⊥W )

=
Cov(X⊥W , βX∗ + γ′W + ϵ)

Var(X⊥W )

=
Cov(X⊥W , βX∗)

Var(X⊥W )
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Note that ũ⊥W = ũ since ũ is mean independent of W . Then,

Cov(X⊥W , βX∗) = Cov(X⊥W , βX/λ)− Cov(X⊥W , βũ/λ)

=
β

λ
Var(X⊥W )− Cov(X∗⊥W + ũ, βũ/λ)

=
β

λ

[
Var(X⊥W )− Var(ũ)

]
where we use Cov(X∗⊥W , ũ) = 0 in the last step. We can conclude

βOLS =
β

λ

[
1− Var(ũ)

Var(X⊥W )

]
=
β

λ
·
[

Var(X∗⊥W )

Var(X∗⊥W ) + λ−2Var(ũ)

]

where we use Var(X⊥W ) = λ2Var(X∗⊥W ) + Var(ũ). Q.E.D.

F.2 Proofs of Appendix C

Before proving Theorem C.1, we present three useful lemmas. For two random vectors A

and B with the same distribution, we denote A
d
= B.

Lemma 1. Let U be a random variable and V be a random vector. Suppose the variance

matrix (U, V ) is finite and positive definite. Then there exists random variables {Ǔa}0≤a≤1

such that

(i) Ǔ1 = U and (Ǔa, V )
d
= (U, V ), for all 0 ≤ a ≤ 1.

(ii) E[U | V, Ǔa = u] = au+ (1− a)E[U | V ].

(iii) E[(Ǔb − Ǔa)
2] ≤ 4(b− a) · E[U2], ∀0 ≤ a ≤ b ≤ 1.

Proof of Lemma 1. Firstly, we can find random variable Ǔ such that

(Ǔ , V )
d
= (U, V ) and U ⊥ Ǔ | V
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Then we can find random variable ξ ∼ U [0, 1] and ξ ⊥ (U, Ǔ , V ). ∀a ∈ [0, 1], let

Ǔa =


U if ξ ≤ a

Ǔ, if ξ > a

It is obvious that Ǔ1 = U . Denote FA|B(·) as c.d.f of random variable A conditional on B.

We have

FǓa|V (u) = aFU |V (u) + (1− a)FǓ |V (u) = FU |V (u)

since (Ǔ , V )
d
= (U, V ). Thus we verify that (Ǔa, V )

d
= (U, V ) for all 0 ≤ a ≤ 1.

As for (ii), by law of iterated expectation,

E[U | V, Ǔa = u]

=Pr(ξ ≤ a) · E[U | V, Ǔa = u, ξ ≤ a] + Pr(ξ > a) · E[U | V, Ǔa = u, ξ > a]

=a · E[U | V, U = u, ξ ≤ a] + (1− a) · E[U | V, Ǔ = u, ξ > a]

=au+ (1− a)E[U | V ]

where we use U ⊥ Ǔ | V and ξ ⊥ (U, Ǔ , V ) in the last step.

It remains to verify result (iii). Note that Ǔa = Ǔb if ξ /∈ [a, b], then

E[(Ǔb − Ǔa)
2] = Pr(ξ ∈ [a, b]) · E

[
(Ǔb − Ǔa)

2|ξ ∈ [a, b]
]

= (b− a) · E
[
(U − Ǔ)2|ξ ∈ [a, b]

]
= (b− a) · E[(U − Ǔ)2]

≤ (b− a) · E[2(U2 + Ǔ2)]

= 4(b− a) · E[U2]

where we use ξ ⊥ (U, Ǔ) and U
d
= Ǔ . Q.E.D.
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Lemma 2. Theorem C.1 holds when λl = λu = 1. Moreover, the constructed true variable

X∗ satisfies that sgn(X∗) = sgn(X).

Proof of Lemma 2. When λu = λl = 1, we have X(1, 1) = X. We can write condition

(iv) in Assumption C.1

Cov(Y ⊥W , X)

Var(X⊥W )
≤ Cov(Z⊥W , Y )

Cov(Z⊥W , X)
≤ Cov(Y ⊥W ,E[X|V ])

Var(E[X⊥W |V ])
(43)

for V = (Z,W, sgn(X)). We need to find random variable X∗ such that (Y,X,W,Z,X∗)

satisfies Assumption 1, 2 and 3.

Step 1 (Construction of X∗
a) : By Lemma 1 (let U = X), there exists random variables

{X̌a}0≤a≤1 such that

(i) X̌1 = X and (X̌a, V )
d
= (X, V ), for all 0 ≤ a ≤ 1.

(ii) E[X | V, X̌a = u] = au+ (1− a)E[X | V ].

(iii) E[(X̌b − X̌a)
2] ≤ 4(b− a) · E[X2], ∀0 ≤ a ≤ b ≤ 1.

Let X∗
a = E[X | V, X̌a] and ũa = X −X∗

a , then we have E[ũa | V, X̌a] = 0. Since X∗
a is a

function of (V, X̌a), we verify the baseline assumption for all 0 ≤ a ≤ 1:

E[ũa | X∗
a ,W, Z] = 0

It is also easy to show sgn(X∗
a) = sgn(X).

The next two steps show there exists 0 ≤ a ≤ 1 such that the exclusion condition of Z

holds. That is,

Cov(Y ⊥W , X∗
a)

Var(X∗⊥W
a )

=
Cov(Z⊥W , Y )

Cov(Z⊥W , X)

Step 2 (Continuity of OLS coefficient): Let

H(a) =
Cov(Y ⊥W , X∗

a)

Var(X∗⊥W
a )

=
H1(a)

H2(a)
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We need to show both the H1(·) and H2(·) are continuous in a ∈ [0, 1].

By result (ii) in Lemma 1, we have

H1(a) = aCov(Y, X̌a) + (1− a)Cov(Y,E[X | V ])

By Cauchy-Schwarz inequality and result (iii) in Lemma 1, we have ∀0 ≤ a ≤ b ≤ 1,

|Cov(Y, X̌a)− Cov(Y, X̌b)| ≤ 4(b− a) · E[X2] · E[Y 2]

which implies that the function Cov(Y, X̌a) is continuous in a ∈ [0, 1]. Thus, H1(·) is

continuous.

Denote η as the OLS estimand of X on W . Then we have X⊥W = X − W ′η. Since

Cov(X − X∗
a ,W ) = 0, we have X∗⊥W

a = X∗
a − W ′η and it is easy to show Var(X∗

a) ≥

Var(E[X | V ]) for all a ∈ [0, 1], then

H2(a) =Var(X∗
a)− Var(W ′η)

≥Var(E[X | V ])− Var(W ′η) = Var(E[X⊥W | V ]) > 0

Denote FV,X(·) as the c.d.f. of (V,X), since (X, V )
d
= (X̌a, V ), we have

H2(a) =E[X∗2
a ]− (E[X])2 − Var(W ′η) (since E[X∗

a ] = E[X])

=E
{
E[X | V, X̌a]

2
}
− (E[X])2 − Var(W ′η)

=

∫
E[X | V = v, X̌a = x]2dFV,X(v, x)− (E[X])2 − Var(W ′η)

=

∫ {
ax+ (1− a)E[X | V = v]

}2
dFV,X(v, x)− (E[X])2 − Var(W ′η)

which is continuous in a. Thus, we verify the continuity of H(·).
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Step 3 (Mean-value theorem): Note that

H(0) =
Cov(Y ⊥W ,E[X|V ])

Var(E[X⊥W |V ])

and using X̌1 = X

H(1) =
Cov(Y ⊥W ,E[X|V,X])

Var(E[X|V,X]⊥W )
=

Cov(Y ⊥W , X)

Var(X⊥W )

Then, we can write inequalities (43) as

H(0) ≤ Cov(Z⊥W , Y )

Cov(Z⊥W , X)
≤ H(1)

By mean value theorem, there exists a∗ ∈ [0, 1] such that

H(a∗) =
Cov(Z⊥W , Y )

Cov(Z⊥W , X)

Hence, we show that the exclusion condition holds under the true variable is X∗
a∗ and finish

the proof. Q.E.D.

Lemma 3 specifies conditions under which the lower and upper bounds in Theorem 1 are

attained. These requirements on the slope function may not be unique if Pr(X∗ = 0) ̸= 0.

We also require that X∗ and X have the same sign almost everywhere.

Lemma 3. Suppose sgn(X∗) = sgn(X) hold almost surely. Suppose the assumptions of

Theorem 1 hold. Then, the upper bound B(λl, λu) is attained if the slope function satisfies

λ(x∗, w, z) =


λu if (z − π′w)x∗ ≥ 0

λl otherwise
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Moreover, the lower bound B(λl, λu) is attained if

λ(x∗, w, z) =


λl if (z − π′w)x∗ ≥ 0

λu otherwise

Proof of Lemma 3. Consider the slope function:

λ(x∗, w, z) =


λa if (z − π′w)x∗ ≥ 0

λb, otherwise

for some λa, λb ∈ [λl, λu]. Note that sgn(X
∗) = sgn(X) implies sgn(Z⊥WX∗) = sgn(Z⊥WX).

By equation (29), we have

Cov(Z⊥W , X∗) = E
[
Z⊥W · X

λ(X∗,W, Z)

]
= E

[
Z⊥W · X

λb + (λa − λb)1{Z⊥WX∗ ≥ 0}

]
= E

[
Z⊥W · X

λb + (λa − λb)1{Z⊥WX ≥ 0}

]
=

1

λa
· E[Z⊥WX]− 1

2
· ( 1
λb

− 1

λa
) · (E(|Z⊥WX|)− E[Z⊥WX])

Then,

βIV

β
=

Cov(Z⊥W , X∗)

Cov(Z⊥W , X)
=

1

λa
− (

1

λb
− 1

λa
) · α =

1 + α

λa
− 1

λb

Let (λa, λb) = (λu, λl) and (λl, λu), we finish the proof. Q.E.D.

We are now ready to prove Theorem C.1.

Proof of Theorem C.1. Consider the upper bound, let X̃ = X(λu, λl). By definition

(42), we have sgn(X) = sgn(X̃). By Lemma 2, there exists random variable X̃∗ such that

sgn(X̃∗) = sgn(X̃) and

E[X̃ − X̃∗ | X̃∗,W, Z] = 0
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By the construction of X̃ = X(λu, λl) (defined in (42)), the slope function of measurement

X is λ(x̃∗, w, z) = λl + (λu − λl)1{(z− π′w)x̃∗ ≥ 0}, where we treat X̃∗ as the true variable.

Then by Lemma 3, the upper bound in Theorem 1 is achieved for (Y,X,W,Z, X̃∗). The

proof of the lower bound is similar; thus, it is omitted. Q.E.D.

F.3 Proofs for Appendix D

Proof of Proposition D.1. Note that

βIV =
Cov(Z⊥W , Y )

Cov(Z⊥W , X)
= β · Cov(Z

⊥W , X∗)

Cov(Z⊥W , X)
+

Cov(Z⊥W , ϵ)

Cov(Z⊥W , X)

By Assumption D.1,we have

|Cov(Z⊥W , ϵ)|
Var(Z⊥W )

= |χ1| ≤ κ

Then,

βIV

(
1− Var(Z⊥W )

Cov(Z⊥W , Y )
· κ

)
≤ β · Cov(Z

⊥W , X∗)

Cov(Z⊥W , X)
≤ βIV

(
1 +

Var(Z⊥W )

Cov(Z⊥W , Y )
· κ

)
(44)

where both upper and lower bounds are positive since Var(Z⊥W ) · κ ≤ |Cov(Z⊥W , Y )|.

Following the proof of Theorem 1, we have

1 + α

λu
− α

λl
≤ Cov(Z⊥W , X∗)

Cov(Z⊥W , X)
≤ 1 + α

λl
− α

λu
(45)

Combined equation (44) with (45), we finish the proof. Q.E.D.
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